Toward Meaningful Outcomes from Dignified Processes

A Tutorial on the Practical Functional Assessment Process for Problem Behavior

Gregory P. Hanley Ph.D., BCBA-D

For more information go to:
www.practicalfunctionalassessment.com

Seminar for: National Autism Conference
August, 2018
Penn State University
With Autism, there is a higher likelihood of problem behavior like meltdowns, aggression, and self-injury.

Why do restricted “lifestyles” dictated by problem behavior persist for many families with children on the spectrum?
Restrictive lifestyles persist partly because problem behavior of children is merely modified medicated mollified micro-analyzed remedied apart from skill development
Powerful working assumption

If problem behavior is occurring with regularity.....

– it is being reinforced

(Even when important biological/medical factors are known or suspected.)
<table>
<thead>
<tr>
<th>Antecedent</th>
<th>Behavior</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishing operation</td>
<td>Problem Beh.</td>
<td>Reinforcement</td>
</tr>
<tr>
<td>Mom attends toSibling</td>
<td>Throwing toys</td>
<td>Mom’s attention</td>
</tr>
<tr>
<td>Dad instructs to turn off Ipad</td>
<td>SIB</td>
<td>Dad gives a little more time on Ipad</td>
</tr>
</tbody>
</table>
The **one** thing at a time model:

- An Antecedent \rightarrow A Behavior \rightarrow A Consequence
- An Establishing **operation** \rightarrow A Problem Behavior \rightarrow A Reinforcer

The shift to the **many** things at a time model:

- Antecedents \rightarrow Behaviors \rightarrow Consequences
- Establishing **operations** \rightarrow Problem Behaviors \rightarrow Reinforcers
The **one** thing at a time model:
An Antecedent
- A Behavior
- A Consequence

An Establishing operation

The **many** things at a time model:

Antecedents
- Establishing operations

Put away iPad
to do chores
(brother present)

→ Behaviors
- Problem Behaviors

→ Consequences
- Reinforcers

→ Noncompliance +
- resistance +
- negotiating +
- screaming +
- flopping +
- slapping

→ Avoidance of chores +
- continued time on iPad +
- choices +
- undivided attention
The many things at a time TREATMENT model:

<table>
<thead>
<tr>
<th>Antecedents</th>
<th>Behaviors</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same establishing operations</td>
<td>"excuse me"</td>
<td>break from more chores+</td>
</tr>
<tr>
<td>Put away iPad + to do chores</td>
<td>Listens to parent</td>
<td>time on iPad +</td>
</tr>
<tr>
<td>(brother present)</td>
<td>"May I have my way please"</td>
<td>choices of activity +</td>
</tr>
<tr>
<td></td>
<td>"Okay, no problem"</td>
<td>some undivided attn</td>
</tr>
<tr>
<td></td>
<td>Complies with multiple</td>
<td></td>
</tr>
<tr>
<td></td>
<td>instructions and corrections</td>
<td></td>
</tr>
</tbody>
</table>
Dignified processes and meaningful outcomes may be achieved when it is assumed that

1. Multiple establishing operations are usually influencing problem behavior and doing so simultaneously

2. Multiple reinforcers simultaneously maintain most problem behavior i.e., problem behavior is multiply controlled and usually controlled by at least escape to tangibles, attention, & either sensory reinforcers, mand compliance, or both
 - The trick is to determine the details within these generic categories that are relevant to each person

3. Most problem behavior emitted by the same person is sensitive to the same synthesized reinforcement contingency
Functional assessment is a **process** to determine the variables influencing problem behavior.

Functional analysis is an attempt to **model** the natural conditions in which problem behavior is evoked and reinforced.
“All models are wrong; some are useful.”

Box & Draper, 1987, p. 424
Functional Assessment Process

Indirect Assessment
*Open-ended interview

Descriptive Assessment
*Single, brief observation

Functional Analysis
*IISCA

Discovery and Demonstration
<table>
<thead>
<tr>
<th>Traditional Functional Analysis</th>
<th>Interview-Informed Synthesized Contingency Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple test conditions</td>
<td>Single-test condition</td>
</tr>
<tr>
<td>Uniform test conditions</td>
<td>Individualized test conditions</td>
</tr>
<tr>
<td>Isolated test contingencies</td>
<td>Synthesized contingencies</td>
</tr>
<tr>
<td>Reinforce dangerous behavior</td>
<td>Reinforce precursors to and dangerous behavior</td>
</tr>
<tr>
<td>Toy-play control condition</td>
<td>Test-matched control</td>
</tr>
</tbody>
</table>
Interview suggested that Gail engaged in meltdowns and aggression....

when Mom was attending to other tasks or people....

in order to gain Mom’s undivided attention and to have Mom play with her and her most preferred toys.
Functional Analysis: Control Condition

Control: *Mom directs her undivided attention to Gail while interacting with her and her most preferred toys the entire time.*

In the control, we are emulating the conditions Mom described as being associated with no problem behavior.
Functional Analysis: Test Condition

Test: Mom attends to other tasks and people....

As soon as Gail engaged in any problem behavior, Mom directs her undivided attention to Gail while interacting with her and her most preferred toys.

In the test, we are emulating the conditions Mom described as being associated with Gail’s problem behavior.
Case Example: Gail, 3 years old, PDD-NOS

By alternating between 5 minute periods of test and control conditions, we were able to turn on and off Gail's problem behavior....

Giving us and her Mom confidence as to why she was engaging in the extraordinary problem behavior

....to simply gain and maintain her Mom’s undivided attention and play time
Safety is Paramount

Safety is primarily insured through:

- Immediate delivery
- Of all suspected reinforcers
- For any member of the response class
 (use relatively open response classes; Warner et al., 2018)

Other safety tactics

- Body position
- Everybody with session termination authority
IISCA - Brandon

- Age: 3
- Diagnosis: None
- Language Level: Speaks in Short Sentences
- Referred for: Aggression, Meltdowns, Noncompliance

![Graph showing problem behavior per minute across sessions.]

Sessions 1 2 3 4 5
Problem Behavior per Minute 0 1 2 3
Control Test

Escape to tangibles, attention, and mand compliance
IISCA - Diego

- Age: 11
- Diagnosis: Autism
- Language Level: Speaks in Short Sentences
- Referred for: Self-injurious behavior; Aggression, Property Destruction

Sessions

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diego

Problem Behavior per Min

- Escape from academic work to tangibles, attention

LIFE SKILLS CLINIC
AT WESTERN NEW ENGLAND UNIVERSITY
What does an informed analysis provide the practitioner?

1. a demonstration of problem behavior sensitivity to a suspected reinforcement contingency

2. a stable and sensitive baseline from which to evaluate treatment

3. a properly motivating set of conditions to teach important life skills
Analysis - Luke

- Age: 4
- Diagnosis: Autism, Attention Deficit Hyperactivity Disorder
- Language Level: Fully fluent speech
- Referred for: Aggression, Property Destruction, Meltdowns

![Graph showing problem behavior per minute over sessions for Luke. The x-axis represents sessions (1 to 9), the y-axis represents problem behavior per minute (0 to 3). The graph shows a marked increase in problem behavior during the 'Control' condition, indicating a decrease in problem behavior when 'Escape to tangibles, attention, mand compliance' intervention was implemented.]
EXT Analysis –
Luke

- Age: 4
- Diagnosis: Autism, Attention Deficit Hyperactivity Disorder
- Language Level: Fully fluent speech
- Referred for: Aggression, Property Destruction, Meltdowns
EXT Analysis – Raj

- Age: 5
- Diagnosis: Autism
- Language Level: Single word utterances
- Referred for: Self-Injury, Aggression, Property Destruction
Analysis - Jeffrey

- Age: 9
- Diagnosis: Attention Deficit Hyperactivity Disorder, Generalized Anxiety Disorder
- Language Level: Speaks with Sophistication
- Referred for: Aggression, Elopement, Meltdowns
 - required several police escorts from school just prior to our involvement
 - Had school 1:1 (we served family)

![Problem Behavior per Min](chart.png)

- Escape to tangibles, attention, and mand compliance

LIFE SKILLS CLINIC
AT WESTERN NEW ENGLAND UNIVERSITY
IISCA: Interview-Informed Synthesized Contingency Analysis

1. Single

2. Individualized

3. Synthesized contingency

4. Reinforce precursors to and dangerous behavior

5. Test-matched

6. Rapid alternation of test and control conditions
Most Important Aspects of our Approach

Interview-informed & Synthesized reinforcement contingencies

*Neither are novel
*Neither are sufficiently recognized in current ABA research or practice
Why synthesize?

Isolated contingencies sometimes do not control behavior whereas synthesized contingencies do.

Case Example (Gail, 3 yo, dx: PDD-NOS)
Setting: Clinic

From Hanley et al. 2014, *JABA*
Analysis Comparison (Slaton et al., 2017, *JABA*)

Sometimes both synthesized and isolated reinforcement contingencies influence problem behavior.
Analysis Comparison
(Slaton et al., 2017, *JABA*)

But our analyses show, more often, that synthesized reinforcement contingencies influence problem behavior whereas isolated ones do not.

Whole contingencies have properties that sometimes cannot be found in the parts of the contingency.
<table>
<thead>
<tr>
<th>Synthesized Contingency</th>
<th>First Author (Year)</th>
<th>Participants</th>
</tr>
</thead>
</table>

Isolated contingencies sometimes do not control behavior whereas synthesized contingencies do.

From: Nature and Scope of Synthesis in Functional Analysis and Treatment of Problem Behavior
Slaton & Hanley (in press, *JABA*)
Treatment efficacy often depends on synthesized contingencies.

Synthesized contingencies had a better effect size in 25 of 26 cases (96%) and never had a smaller effect.

From:
Nature and Scope of Synthesis in Functional Analysis and Treatment of Problem Behavior
Slaton & Hanley (in press, *JABA*)
Treatment efficacy often depends on synthesized contingencies.

From: Nature and Scope of Synthesis in Functional Analysis and Treatment of Problem Behavior
Slaton & Hanley (in press, JABA)

Within-subject comparisons

Mean baseline reduction (%)

≥80% reduction in PB
Treatment applications

81% 12%

Synthesized Isolated
Treatment efficacy often depends on synthesized contingencies.

From:
Nature and Scope of Synthesis in Functional Analysis and Treatment of Problem Behavior
Slaton & Hanley (in press, JABA)

≥80% reduction in PB 87%
Treatment Comparison Results

(Slaton et al., 2017, *JABA*)

IISCA-based treatment

Standard-based treatment

Problem behavior per min

Sessions

Emily

Jeff

(Slaton et al., 2017, *JABA*)
and it works despite different participant characteristics and different implementation contexts
From Jessel, Hanley, & Ghaemmaghami (JABA, 2016)
From Rajaraman et al. (2018)
Effects deemed meaningful by parents and teachers following analysis and treatment involving synthesized reinforcement contingencies.

Similar effects reported in these—from other research groups:

Herman, Healy, & Lydon (2018, *Dev. Neuro.*)

Jessel, Ingvarsson, Metras, Hillary, & Whipple (2018, *JABA*)

Beaulieu, Clausen, Williams, & Herscovitch (in press, *BAP*)

Chusid & Beaulieu (in press, *JABA*)
Jessel et al. (2018) *JABA*

Achieving Socio-Emotionally Significant Reductions in Problem Behavior following the Interview-Informed Synthesized Contingency Analysis: A Summary of 25 Outpatient Applications
Why do qualitatively rich, ecologically relevant, and synthesized contingencies allow for effective outcomes?

Some candidate variables:
1. Greater amount of reinforcement
2. Varied reinforcers minimizing satiation
3. Provision of choice among reinforcers (which is reinforcing in and of itself)
4. Positive interactions between reinforcers (i.e., they may be complimentary reinforcers)
5.

For now, let’s simply consider this metaphor:
With SFA, there is relatively short motivational distance travelled as child transitions from:

- no tangible → tangible
- work → no work
- no attention → attention (reprimands)
With SFA, there is sometimes a relatively short and incomplete **motivational distance travelled** during transition

E.g., Demand condition

no tangible, no attention, no mand compliance, and work **to** no work

(& still no attention, tangibles, or mand compliance)
An incomplete **motivational distance travelled**

may lead to out of control problem behavior in SFA

may lead to a failure for an FCR to be acquired
With IISCA, there is relatively long **motivational distance travelled** as child transitions from:

No tangibles, no mand compliance, limited sensory reinforcers, no high quality attention, & work

tangibles, mand compliance, all sensory reinforcers, high quality attention, and no work
With IISCA, there is relatively long **motivational distance travelled** as child transitions from:

No tangibles, no mand compliance, limited sensory reinforcers, no high quality attention, & work

But, don’t forget about possible interactions:

which probably creates even greater **motivational distance travelled**
With proper **motivational distance travelled**, problem behavior is evoked quickly in analyses and is discontinued once Sr is delivered.
With proper **motivational distance travelled**, FCRs are quickly acquired (& problem behavior does not usually persist during FCT)

With proper **motivational distance travelled**, FCRs are quickly acquired (& problem behavior does not usually persist during FCT)
“A common source of misunderstanding is the neglect of what happens when variables are combined in different ways.

Although a functional analysis begins with relatively isolated relations, an important part of its task is to show how its variables interact.”
That which you must know from a functional analysis?

That which you can safely infer from a functional analysis?

That which you do not need to know from a functional analysis?
That which I must know via my functional analysis:

✓ That I can reliably turn problem behavior off with the presentation of the reinforcers

✓ That I can reliably turn problem behavior on with the presentation of the evocative events

✓ And that the reinforcers and evocative events were identified by other people relevant to the behaver
Brandon

Escape to attention, tangibles, and mand compliance

Sessions

Problem Behavior per Min

Test
Control

Sessions
1 2 3 4 5
Problem Behavior
0
1
2
3

0
1
2
3

1 2 3 4 5

Brandon

Escape to attention, tangibles, and mand compliance
Brandon

Escape to attention, tangibles, and mand compliance

Problem Behavior per Min

Sessions

Problem Behavior during Establishing Operation

Session 2

Problem Behavior during Reinforcement

Session 4

Reinforcement

Session 5

Seconds
That which I can safely infer via my functional analysis:

 ✓ Response class membership
Problem Behaviors reported to co-occur (in order of concern)

1. SIB
2. Aggression
3. Disruptive Behavior
4. Disruptive vocalizations
5. Whining/complaining
This analysis shows all forms of problem behavior are evoked and maintained by same synthesized contingency.

This happens every time we conduct this sort of analysis.
(Warner et al., 2016)

This happens every time anybody else conduct this sort of analysis
That which I can safely infer via my functional analysis:

✓ Response class membership

Reported co-occurrence = maintained by same reinforcers

I will infer response class membership and use their response to intervention (RTI) as verification
That which I do not need to know via my functional analysis:

✓ The single operant function of each problem behavior
✓ Whether problem behavior is maintained by positive or negative reinforcement
✓ Whether some element of a synthesized contingency is a “true” contingency or merely a “false positive”
✓ Whether I can neatly compartmentalize the operation in the analysis into a tidy generic class of reinforcement
 (e.g., social positive, social negative, attn, tang, esc, etc.)
A final point...

High rates in tests sessions of functional analyses are not to be celebrated
High rates of PB are not necessarily a good thing in a functional analysis.
If you can control problem behavior in an analysis, you can treat that behavior. You can do this.

If you try but can't control problem behavior in an analysis, your treatment will likely create unsafe situations, be ineffective, and necessitate restrictive or socially invalid treatment components.
Come up with at least one question relevant to conducting this practical functional assessment process.
On to treatment at 1:15 today.

For more information, go to:

www.practicalfunctionalassessment.com